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Abstract
A fundamental and largely unanswered question in neuroscience is whether extrinsic connectivity and function are closely
related at a fine spatial grain across the human brain. Using a novel approach, we found that the anatomical connectivity of
individual gray-matter voxels (determined via diffusion-weighted imaging) alone can predict functional magnetic resonance
imaging (fMRI) responses to 4 visual categories (faces, objects, scenes, and bodies) in individual subjects, thus accounting for
both functional differentiation across the cortex and individual variation therein. Furthermore, this approach identified the
particular anatomical links between voxels that most strongly predict, and therefore plausibly define, the neural networks
underlying specific functions. These results provide the strongest evidence to date for a precise and fine-grained relationship
between connectivity and function in the human brain, raise the possibility that early-developing connectivity patterns may
determine later functional organization, and offer a method for predicting fine-grained functional organization in populations
who cannot be functionally scanned.
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Introduction
A deep-rooted assumption in neuroscience holds that a region’s
function is primarily determined by its extrinsic connectivity.
Indeed, one of the key-defining properties of a cortical area is
its pattern of connectivity to the rest of the brain, an idea sup-
ported by extensive evidence from tracer studies in macaques
(Ungerleider and Mishkin 1982; Felleman and Van Essen 1991;
Passingham et al. 2002; Jbabdi, Lehman, et al. 2013). However,
great functional diversity exists within cortical regions, wherein
neighboring neural clusters prefer different stimulus properties
(Colby and Goldberg 1999; Moeller et al. 2008). Specific connectiv-
ity patternsmay be necessary for functional diversityat afiner spa-
tial grain, and recent studieshavebegun toexplore this relationship
between anatomical projections and cortical specialization

(Moeller et al. 2008; Bock et al. 2011; Briggman et al. 2011; Glickfeld
et al. 2013). Yet it remains largely unknownwhether connectivity
predicts function at a fine grain in the human brain, particularly
for nonprimary cortical regions engaged in higher cognitive
functions.

The best evidence for a close relationship between extrinsic
connectivity and function in the human brain comes from the
combination of diffusion-weighted imaging (DWI) and functional
imaging using functional magnetic resonance imaging (fMRI)
(for review, see Jbabdi and Behrens 2013). Pioneering studies
have shown that sharp changes in DWI connectivity occur at
the boundaries of functionally defined regions that can be identi-
fied through cytoarchitectonics (e.g., Johansen-Berg et al. 2004;
Saygin et al. 2011) and at the boundaries of posited functional
divisions based on meta-analyses (Tomassini et al. 2007;
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Beckmann et al. 2009; Mars et al. 2011, 2012, 2013; Sallet et al.
2013). However, it is unknown 1) whether connectivity patterns
can also characterize high-level regions defined in an individual
subject, including regions that are highly variable across individuals
(Saxe et al. 2006; Fedorenko et al. 2010; Frost andGoebel 2012), and 2)
whether the relationship between connectivity and function holds
at a finer grain than the level of whole cortical areas. Here, we test
these hypotheses by integrating DWI with fMRI and assessing the
degree to which we can predict the neural response of any cortical
voxel using only the connectivity pattern of that voxel.

This work bears directly on 3 important points. First, as just
noted, the presence of a fine-scaled topographic relationship be-
tween extrinsic connectivity and function is a longstanding and
fundamental question in neuroscience (Jbabdi, Sotiropoulos,
et al. 2013), and is largely unknown for higher level functions of
the human brain. Second, according to one influential hypoth-
esis, extrinsic connections play a key role in directing brain devel-
opment, instructing the functional development of cortical
regions by determining the information each receives (Sur et al.
1988). If it is generally true that areal specialization arises devel-
opmentally as a consequence of pre-existing differentiation in
connectivity patterns across the cortex, then we should see a
tight relationship between extrinsic connectivity and function
in adults (and we would further predict that differentiation of
connectivity patterns across the cortex precedes differentiation
of function). Third, the ability to predict the functional organiza-
tion of an individual’s brain from the pattern of connectivity in
the same individual would have substantial clinical applications,
enabling functional maps to be derived for individuals who can-
not be functionally scanned because they are comatose, unable
to perform the tasks required for functional scanning, or unable
to lie still without sedation.

Recently, a novel approach that integrates DWI and fMRI was
developed to assess the relationship between structural connect-
ivity and functional specificity, and was tested for the fusiform
gyrus in humans (Saygin et al. 2012). Specifically, we showed
that the face selectivity of each voxel in the fusiform gyruswithin
individual subjects could be predicted from the strength of con-
nection of that voxel to the rest of the brain (its unique connect-
ivity profile, or fingerprint), as measured through DWI. Here, we
test whether this relationship between connectivity and face se-
lectivity is foundmore generally for other cortical regions and for
other kinds of functional specificity.

If a tight relationship between connectivity and function is a
general principle of the cortex, then we predict that wewill find a
similar ability to predict other visual functional selectivities
across cortex. Another possibility, however, is that the connectiv-
ity–function relationship may be unique to or stronger for faces,
which have great evolutionary significance to primates. Substan-
tial evidence from behavioral, neuroimaging, electrophysiologic-
al, and lesion work indicates that faces are processed by distinct
neural mechanisms specialized for faces per se (Warrington and
James 1967; Desimone et al. 1984; Perrett et al. 1992; Kanwisher
et al. 1997; McCarthy et al. 1997; Tsao et al. 2006; Freiwald and
Tsao 2014). Some behavioral evidence even suggests that these
mechanisms may develop with little or no visual experience of
faces (Sugita 2008; Turati et al. 2008; Rosa-Salva et al. 2010). Thus,
faces are a “special” visual category innumerous respects (McKone
and Robbins 2011), sowe cannot assume that the tight relationship
we found between connectivity and face selectivity in fusiform
cortex will generalize to other visual categories or regions.

To answer this question, we acquired both DWI and fMRI
images from each subject while they viewed stimuli from mul-
tiple visual categories (faces, bodies, objects, and scenes), and

we tested whether a voxel’s unique connectivity pattern can pre-
dict that voxel’s functional selectivity to each of these visual cat-
egories. For each anatomically defined parcel, we trained a
computational model on the voxel-wise relationship between
connection probabilities and fMRI responses across subjects,
and applied the resultingmodel to a newparticipants’ connectiv-
ity data, which resulted in voxel-wise-predicted fMRI responses
for that new participant. We compared each subject’s fMRI pre-
dictions from connectivity with that subject’s actual fMRI re-
sponses, and also to fMRI predictions based on fMRI maps from
other subjects (i.e., group-average benchmark model). Lastly, in
order to better characterize the connections that may underlie
brain function, we identified the connections that most strongly
predicted each visual category, and analyzed these predictive
networks with graph theoretical approaches.

Materials and Methods
Participants

DWI and fMRI datawere collected from30participants; of these, 4
participants were excluded from subsequent analyses due to
excessivemotion (determined by visual inspection). Analyses in-
cluded 26 participants (mean age = 26.0, 11 M:15 F) who were re-
cruited from the greater Boston area. Participants were screened
for history of mental illness, gave written informed consent, and
were compensated at $30 per hour. The study was approved by
the Massachusetts Institute of Technology and Massachusetts
General Hospital ethics committees.

DWI Acquisition Parameters and Tractography

DWI data were acquired using echo planar imaging (64 slices,
voxel size 2 × 2 × 2 mm, 128 × 128 base resolution, diffusion
weighting isotropically distributed along 30 directions, b-value
700 s mm–2) on a 3-T Siemens scanner with a 32-channel head-
coil (Reese et al. 2003). A high-resolution (1 mm3) 3D magnetiza-
tion-prepared rapid acquisition with gradient echo scan was
acquired on these participants.

Automated cortical parcellation was performed in each parti-
cipant’s T1 scan, using the Destrieux atlas (Destrieux et al. 2010)
from Freesurfer 5.1 (Fischl et al. 2002, 2004) to define 148 cortical
regions. Automated parcellation results were reviewed for qual-
ity control andwere then registered to each individual’s diffusion
images using Freesurfer’s bbregister function, which uses sur-
face-based algorithms to register images, and we initialized the
registrationwith FSL’s FLIRT.We used the DWI-registered parcels
as seed and target regions for fiber tracking. The resulting cortical
targets were then checked and corrected for automatic parcella-
tion or segmentation errors if necessary. The principal diffusion
directions were calculated per voxel, and probabilistic diffusion
tractography was carried out using FSL-FDT (Behrens et al.
2007) with 5000 streamline samples in each seed voxel to create
a connectivity distribution to each of the target regions, while
avoiding a mask consisting of the ventricles. Each of the 148 re-
gions was used as a seed region and tractography was carried
out to all 147 remaining regions, or targets. Thus, every voxel
within each parcel is described by a vector of connection prob-
abilities to each other brain region.

fMRI Acquisition Parameters and Analysis

Stimuli for the fMRI consisted of 3-s movie clips of faces, bodies,
scenes, objects, and scrambled objects. Movies of faces and bod-
ies were filmed against a black background and framed to reveal
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just the faces or bodies of 7 individuals, shown one at a time.
Scenes consisted primarily of pastoral scenes filmed through a
car window while driving slowly through the countryside or
suburb. Objects were selected specifically to minimize any sug-
gestion of animacy of the object itself or of an invisible actor
pushing the object. Scrambled object clips were constructed
by dividing each object movie clip into a 15 × 15 box grid and spa-
tially rearranging the location of each of the resulting boxes. Pilot
testing indicated that a contrast of the response for moving faces
versus moving objects identified the same fusiform face area
(FFA) as that identified in a standard static localizer. Further stud-
ies show that the FFA responds similarly to movies of faces as to
static snapshots of faces (Pitcher et al. 2011).

Functional data were acquired over 4 block-design functional
runs (gradient echo sequence 2000 ms TR, 30 ms TE, 90° flip, 234
volumes, 3 × 3 × 3 mm voxel size). Each functional run contained
three 18-s fixation blocks at the beginning, middle, and end of
the run. During these blocks, a series of 6 uniform color fields
were presented for 3 s each. Each run also contained 2 sets of 5
consecutive stimulus blocks (faces, bodies, scenes, objects, or
scrambled objects) sandwiched between these rest blocks, result-
ing in 2 blocks per stimulus category per run. Each block lasted
18 s and contained 6 3-s movies clips from each of the 5 stimulus
categories. The order of stimulus category blocks in each run was
palindromic, and specific movie clips were chosen randomly to
be presented during the block. Participants were asked to pas-
sively view the stimuli.

Functional datawere analyzedwith FSL software (http://www.
fmrib.ox.ac.uk/fsl/). Images were motion corrected, smoothed
(5-mm Gaussian kernel, full-width at half-maximum) and de-
trended, and were fit using a standard gamma function (d = 2.25
and t=1.25).Datawerenot spatiallynormalized. Statisticalmodeling
was then performed using a general linear model on the prepro-
cessed functional images. Next, t-maps corresponding to each con-
trast of interest were overlaid on each participant’s high-resolution
anatomical image. The contrasts were as follows: Faces >Objects,
Bodies >Objects, Scenes >Objects, Objects > Scrambled objects.

Each participant’s functional image for each contrast was re-
gistered to his or her DWI using Freesurfer’s bbregister and initi-
alized using FSL’s FLIRT. Becausewewere interested in predicting
relative activation values that were independent of task-specific
parameters such as the degrees of freedom, we standardized the
t-statistic values across all gray-matter parcels per participant.
For each anatomical parcel, the mean functional value across
the brain was subtracted from each voxel and divided by the
standard deviation. The standardized value per voxel was then
used for the subsequent regression models, which were built
per region. Thus, every voxel is now also described by a vector
of t-statistics for each functional contrast.

Modeling Approach

Subjects were divided into 2 groups (group 1 for leave-one-out
cross-validation and group 2 for replication); this procedure en-
sures that any relationship learned from one set of data is separ-
ate from the data that is used to assess the accuracy of that learnt
relationship (Hastie et al. 2009).

Group 1
To predict function from connectivity, we used a leave-one-sub-
ject-out cross-validation (LOOCV) routine, in which we excluded
a single subject whose data we wish to predict, trained a model
with all of the remaining subjects, and then applied the model
to the left-out subject. This routine was repeated for all subjects,

generating independent predictions for all subjects. Each seed
parcel is modeled as follows (Fig. 1): every voxel of the modeled
region (i.e., seed parcel) has a neural response to a given func-
tional contrast. Every voxel also has a 148-dimensional vector
of connection probabilities to each other brain parcel (targets).
We then concatenate all of the native-space voxels from each
subject’s seed parcel (excluding all voxels of the left-out subject),
to produce 1) a vector of all seed voxels’ neural responses (length
N voxels) and 2) amatrix of connectivity vectors for each of these
voxels (N × 148, where rows are voxels and columns are connec-
tion probabilities to each target parcel). We used a linear regres-
sion to model the relationship between the fMRI contrast
response of each voxel, and the 148-dimensional vector of con-
nectivity for each voxel. Because all analyses were performed
on subject-specific anatomy, the number of voxels in a given par-
cel varied among individuals. However, because each voxel was
an independent observation in the regression, the model could
learn the relationship between the fMRI response and the 148-
dimensional vector of connectivity of each voxel (Fig. 1b). It is
also important to note that there was no identifying or matching
of spatial location of voxels across participants. Further, the
model was blind to the participant each voxel belonged to. This
modeling step resulted in a 148-dimensional vector of predictive
coefficients (ƒ(x); Figure 1e; note that the coefficient for the mod-
eled parcel’s connectivity with itself is undefined because with-
in-parcel connectivity was not included). These coefficients are
weights that reflect the relevance of each target parcel’s connect-
ivity in predicting neural responses in the seed. The left-out par-
ticipant also has a connectivity matrix of Ni voxels × 148 parcels
(i.e., connectivity from every voxel of the left-out participant’s
seed parcel to each target parcel). We predicted the neural re-
sponses for this left-out subject by applying the coefficients ƒ(x)
to each voxel’s 148-dimensional connectivity vector, resulting in
a predicted fMRI value for every voxel of the seed parcel.

In order to generate predictions for the entire brain, this
procedure, from tractography to prediction, was repeated for
every parcel, and concatenated. This was then compared with
the participants’ own observed fMRI images for that contrast,
and absolute errors (AEs) were calculated (absolute value of
actual – predicted per voxel).

Group 2
Cross-validation routines ensure independent data modeling for
each fold (i.e., the left-out subject is completely excluded from
the modeling procedure based on the remaining subjects). How-
ever, because the n − 1 data are used to model all other folds,
cross-validation procedures have a potential for over-fitting,
and may be more optimistic than fully independent test groups.
Therefore, we built an independent test group of participants. For
each anatomical parcel, we generated a final linear regression
model from all of the group 1 subjects’ connectivity and fMRI
data. We applied this final model of the relationship between
connectivity and function, to each group 2 subjects’ connectivity
data, to produce predicted fMRI maps per subject. Prediction ac-
curacies were calculated by comparing these predictions with
each participant’s actual fMRI values (errors were calculated in
the same way as for group 1). The accuracies were tested against
random permutations and other benchmarks (below). We also
performed a one-way ANOVA on the mean AE across all gray-
matter voxels per subject for all of the functional contrasts to
discoverwhether any contrastswere better predicted by connect-
ivity than the others; post hoc t-tests were used to identify the
contrasts that were significantly better predicted than others (at
P < 0.05 Bonferroni corrected for 6 pair-wise comparisons).

Connectivity Predicts Cortical Function in Humans Osher et al. | 3
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Connectivity-Based Predictions of Neural Responses
across All Gray-Matter Voxels

As a measure of performance accuracy, we measured the AE per
voxel (reported in standardized units) per participant, by calcu-
lating the absolute difference between the predicted and actual
values (AE, also see above). We compared the prediction accur-
acies with a benchmarkmodel to further test whether connectiv-
ity can predict function beyond what can be predicted from a
group analysis (see Saygin et al. (2012) for details).

The groupmodelswere alsomade through LOOCV. Eachpartici-
pant’s functional data were spatially normalized into Montreal
Neurological Institute spacewith FreeSurfer’s surface-based bbreg-
ister and FSL’s FNIRT, checked, and corrected for registration errors,
and superimposed to create composite maps. We performed a
random-effects test on whole-brain fMRI data with SPM8 on each
contrast image fromall but one participant. The resulting t-statistic
image,whichwas based on all the other participants in normalized
space, was applied to the participant left out of the group analysis

Figure 1. Schematic of processing pipeline. Each individual’s anatomical image is first divided into 148 parcels, shown on the colored brain. For each parcel, the following

procedure is carried out (i.e., each parcel is modeled separately). (a) Connectivity from each seed voxel to every other parcel is calculated for each individual, and the

connectivity matrices from all individuals except for one (the left-out subject) are concatenated. Voxels are shown in rows (this number will vary for each individual)

and the 148 target parcels are in columns; connection probability is depicted in color. (b) Concatenate the fMRI response (depicted as a colored vector) to the contrast

of interest (e.g., Faces > Objects) such that every voxel is matched with its vector of connectivity in (a). (c) A linear regression (represented as ÷) models the relationship

between (a) and (b). This relationship (ƒ(x)) is a vector of coefficients the same length as the number of columns in (a). It reflects the contribution of each target parcel to

predicting fMRI responses, and is depicted as the grayscale vector. (d) The left-out participant also has a connectivity matrix of n voxels × 148 parcels. (e) ƒ(x) is applied to

each voxel in the left-out participant’s connectivity matrix, which yields (f ) a predicted fMRI response for every voxel. Thus, the left-out participant now has an fMRI

response that is predicted from his/her own DWI connectivity alone. The predicted responses are then compared with that participant’s actual fMRI responses per

voxel. Every participant is left-out iteratively such that independent predictions are generated for each participant, in their own native space. This procedure is

repeated for each parcel, and for each contrast. After all of group 1 participants have been predicted, a final ƒ(x) is learned from all the participants (i.e., no one is left-

out). This final ƒ(x) is then applied to new participants from an independent group (group 2). Steps (d–f ) are thus repeated for each group 2 participant to generate

predicted fMRI responses for every voxel, for every parcel, and for every contrast.
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andwas registeredback intohis orhernative space. This resulted in
a predicted value for each voxel. A final group-average t-statistic
was also generated from all of the group 1 participants, and this
group-average map was applied to each of the group 2 subjects to
evaluate group-based prediction accuracies of function. We per-
formed a pair-wise t-test of mean absolute and squared prediction
errors of all gray-matter voxels across the participants in groups 1
and 2 separately.

Connectivity-Based Predictions of Neural Responses
Within Regions of Interest

For each contrast, we then registered each subject’s actual and
predicted fMRI maps (based on the group-average and connect-
ivity analyses separately) to a common Freesurfer CVS atlas
(Postelnicu et al. 2009; Zöllei et al. 2010). The probabilistic par-
cels of ROIs (based on a large independent sample of adults,
Julian et al. 2012) were created in this CVS space, and we calcu-
lated prediction accuracies for connectivity versus group aver-
age within each of these ROIs. In this way, each of the ROIs
was comparable in size across participants. We performed a
pair-wise t-test per participant across all gray-matter voxels
within each of the ROI parcels. A Bonferroni-corrected criterion
threshold of P < 0.05/(26 × 19) (total number of subjects in both
groups times number of ROIs) was used to report the number
of participants whose activation pattern was better predicted
by one model versus another.

Parcels with the Strongest Relationship Between
Connectivity and Function

We next examined the model coefficients in order to determine
which parcels have the strongest relationship between their pat-
tern of connectivity and neural selectivity. For each functional
contrast, we produced a final connectivity model from all the
subjects in group 1 and evaluated each anatomical parcel’s
model R2. The R2 is a standard metric of goodness of fit, and for
these data, it reflects the proportion of the variance in fMRI activ-
ity that was accounted for by connectivity, across all of the voxels
in the region and across all subjects (the model is agnostic to
which voxels belong to which subject). R2 is especially useful
for comparisons across parcels, as it is standardized and bound
between 0 and 1; by comparison, mean absolute error (MAE) is
not standardized and unbounded, and reflects prediction per-
formance rather than themultivariate relationship between con-
nectivity and function. We separately correlated each parcel’s R2

with 2 metrics: 1) functional selectivity and 2) accuracy of multi-
voxel pattern analysis (MVPA; seeHaxby et al. 2001), which reflect
how well the response patterns across voxels within a parcel are
able to differentiate between each functional condition. We cal-
culated functional selectivity by identifying the 5th percentile
voxels (based on t-statistic responses to each functional contrast)
from 3 of 4 functional runs, and averaging the responses of these
voxels from the remaining functional run. We repeated this pro-
cedure 4 times, iteratingwhich runwas left out, and averaged the
5th percentile functional contrast responses across all of these
iterations. Thus, themeasure of functional selectivity was gener-
ated independently from the data that was used to identify the
top responding voxels, and was also less susceptible to noisy
spikes in fMRI data. In this way, we identified the functional se-
lectivity of each anatomical parcel to each functional contrast
and could assess the extent to which the functional selectivity
of a parcel was related to how well connectivity could predict
function.

Functionally Relevant Networks for Predicting Neural
Responses

For each parcel and for each contrast, we generated afinalmodel
using all of the subjects from group 1 (see above). This model
yielded a set of predictive coefficients (ƒ(x)), which was a 148-di-
mensional vector. This vector reflected the weight or contribu-
tion of each target’s connectivity in predicting responses in
the seed parcel. Some of these connections were significant
predictors, and others were not. We binarized the predictive
coefficients based on Bonferroni-corrected significance, and
concatenated these vectors across all parcels. This resulted in
a 148 × 148-dimensional affinity matrix for each functional
contrast, or the functionally relevant network (FRN) for that
contrast. There were a total of 4 affinity matrices (one per con-
trast). A row of thismatrix represents a single parcel, and its col-
umns reflect whether each other region significantly predicts
this parcel’s neural activity: significant predictors are repre-
sented by ones and nonsignificant predictors are represented
by zeroes. We can depict this matrix as a network, with predic-
tors as sources and the regions that they predict as sinks (i.e., ar-
rows originate frompredictors and point toward the regions that
they predict). This complex network offers valuable information
about the influence of each parcel on predicting responses
across the brain. We used various graph theoretical measures
to quantify the contribution of each parcel in predicting con-
nectivity, and we related these measures to the functional se-
lectivity of the parcels.

The regression models know nothing about the function of
each of these predictive parcels; the model is built only on the
fMRI response of each voxel within the seed parcel, and each
seed voxel’s connectivity with the target parcels (not the fMRI re-
sponse of these target parcels). But we were interested in explor-
ing 1) whether the most common predictive parcels are the most
functionally selective for a given contrast, 2) whether the predic-
tors are predictive of each other and form cliques of functionally
selective parcels that are predictive of one another, and 3)
whether the most embedded predictors (i.e., the foundations or
cores of the FRN) are themost selective. For each contrast, we cal-
culated each parcel’s degree, clustering coefficient, and core
number, and correlated these measures with the functional se-
lectivity of the parcels. This functional selectivity measure was
identical to what was used in the previous section (see Parcels
with the Strongest Relationship Between Connectivity and Func-
tion); briefly, we identified the top 5% voxels based on 3/4 runs,
averaged the functional responses of those voxels in the left-
out run, iteratedwhich runwas left out, and averaged the 5th per-
centile functional contrast responses across all of these itera-
tions, and then across all subjects.

A parcel’s degree is the number of other parcels that are pre-
dicted by connectivity to that givenparcel. In otherwords, itmea-
sures how often a parcel’s connectivity predicts function
elsewhere. To calculate each parcel’s degree for each contrast,
we summed each column of the affinity matrix for each contrast,
which again is binary and defines what parcels are predictive of
each other parcel. We also calculated the clustering coefficient
for each parcel (seeWatts and Strogatz 1998). The clustering coef-
ficient for a given parcel is based on its neighbors (i.e., the other
parcels it predicts and the parcels that are predicted by it). The
clustering coefficient for each parcel is the proportion of that par-
cel’s neighbors that are themselves neighbors. It is equal to the
number of edges between a parcel’s neighbors divided by all pos-
sible edges among those neighbors. The clustering coefficient
ranges from 0 to 1, where 0 indicates that none of a parcel’s
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neighbors predict one another, and 1 indicates that all of a par-
cel’s neighbors are predictive of each other. Finally, we imple-
mented k-core decomposition (Lick and White 1970; Seidman
1983), in which, for increasing integers in k, parcels are removed
recursively until all parcels in the remaining subnetwork have a
degree of at least k. Each parcel is then assigned a core number,
which is the largest k-core that a parcel belongs to. More detailed
information about this procedure can be found in Hagmann et al.
(2008) and Alvarez-Hamelin et al. (2005).

Results
Wedivided each individual’s native anatomical brain image into a
common set of 148 cortical parcels using the Destrieux atlas (Des-
trieux et al. 2010) from Freesurfer 5.1 (Fischl et al. 2002, 2004).
These parcels are defined separately for each individual, and re-
tain individual anatomical variations. By establishing the corres-
pondence of each anatomical parcel across subjects, this
method enables us to define the connectivity of each voxel in a
common currency across subjects: the strength of the connection
of that voxel to each of the 147 other parcels. We can thus derive
fromone set of subjects the voxel-wise relationship between func-
tion and connectivity (to all 147 other parcels), and then apply this
relationship to new individuals, predicting the functional re-
sponses of each voxel in each new subject from the diffusion-
based connectivity of that voxel to the 147 other parcels. We com-
pared the resultingDWI connectivity-based predictions of fMRI re-
sponses (i.e., t-statistic contrast values) to eachparticipant’s actual
fMRI values for that contrast, and evaluated the accuracy of the
predictions with respect to a group-average benchmark. We first
assessed how well connectivity predicts function across all gray-
matter voxels (see Connectivity-Based Predictions of Neural Re-
sponses across All Gray-Matter Voxels). We next compared con-
nectivity-based versus group-average voxel-wise prediction
accuracies within selective regions of interest (ROIs) that were de-
fined based on an independent dataset (see Connectivity-Based
Predictions of Neural Responses Within Regions of Interest). We
then asked whether connectivity is especially predictive of
function in parcels with the most reliable fMRI responses (see
Parcels with the Strongest Relationship Between Connectivity
and Function). Finally, we analyzed the subset of connections
that best predicted voxel-wise functional activation, or the
FRN for each visual domain across cortex [see Functionally Rele-
vant Networks for Predicting Neural Responses].

Connectivity-Based Predictions of Neural Responses
across All Gray-Matter Voxels

We concatenated the voxel-wise predictions of fMRI contrast re-
sponses across all parcels, and calculated prediction accuracy
for all cortical gray-matter voxels. The contrast for “Faces”
(Faces > Objects) typically elicits activation in the posterior
superior temporal sulcus, and in ventral temporal and occipital
regions known as the FFA and occipital face area (Table 1).
Figure 2a illustrates the results for a representative subject.
The predicted response (Fig. 2a), built solely from the same
subject’s connectivity data, is strikingly similar to the actual
response. This result demonstrates that an individual’s response
pattern to Faces can be well predicted by that individual’s con-
nectivity pattern.

To quantify prediction accuracy, we measured prediction er-
rors in each individual’s native anatomy (in diffusion space).
We calculated the AE per voxel as the difference between the pre-
dicted contrast t-statistic and actual fMRI images, and MAE as a

measure of accuracy for each contrast averaged over all gray-
matter voxels (Fig. 3a). Because group analyses are currently
the only alternative means of predicting voxel-wise neural re-
sponses in a new participant, they were chosen as benchmark
models that connectivity-based predictions should meet or ex-
ceed in order to be considered useful. These group-average
models also yielded voxel-wise predictions of fMRI activation,
and were compared with the voxel-wise predictions from con-
nectivity. Across all gray-matter voxels, connectivity signifi-
cantly outperformed the group-average predictions for the
first group of participants (i.e., cross-validation group) in pre-
dicting responses to faces (T17 = −45.13, P = 3.84 × 10−19). Further,
the connectivity-based predictions were comparable with the
fMRI scan–rescan reliability in 5 participants who were func-
tionally scanned on 2 separate occasions (Supplementary
Fig. 1).

Next, we evaluated the connectivity-based predictions in an
independent test group of participants (group 2; Fig. 3b) because
we wanted to ensure replicability and prevent model over-
fitting (see Materials and Methods). We again found that
connectivity outperformed benchmark models across all gray-
matter voxels, for Faces (T7 = −21.24, P = 1.29 × 10−7). These
results replicate the previous findings from Saygin et al. (2012),
where connectivity predictions outperformed the group-
average benchmark predictions in the fusiform for Faces >
Scenes, and extend the findings for the whole cortex and for
the contrast of Faces > Objects.

The contrast for “Bodies” (Bodies > Objects) localizes the func-
tionally defined regions known as the extrastriate body area and
the fusiform body area (FBA). Again, a subject’s own connectivity
patterns are capable of predicting the landscape of body selectiv-
ity in and around these regions (Fig. 2b). Across all gray-matter
voxels, we found that connectivity-based predictions were
more accurate than group-based predictions for group 1 (T17 =
−31.50; P = 1.62 × 10−16) as well as for another group of partici-
pants (group 2: T7 =−20.56; P = 1.62 × 10−7).

“Scenes” (Scenes > Objects) typically evoke activity along
the ventral medial surface (e.g., Sewards 2011). Some of the func-
tional regions often associated with scene selectivity are the
parahippocampal place area and retrosplenial cortex, and again
we see that a subject’s connectivity pattern alone is highly pre-
dictive of their pattern of functional response (Fig. 2c). We found
that connectivity was a better predictor than group activations of
functional responses voxelwise across the whole brain in group 1
(T17 =−27.12; P = 1.97 × 10−15) as well as in group 2 (T7 =−20.31;
P = 1.76 × 10−7).

“Objects” (Objects > Scrambled Objects) result in a distributed
set of functional regions collectively known as the lateral

Table 1 Functional domains with corresponding specialized brain
regions (fROIs)

Function fROIs

Face perception Fusiform face area, FFA
Occipital face area, OFA
Superior temporal sulcus, STS

Body perception Extrastriate body area, EBA
Fusiform body area, FBA

Scene perception Parahippocampal place area, PPA
Transverse occipital sulcus, TOS
Retrosplenial cortex, RSC

Object perception Lateral occipital, LOC
Posterior fusiform sulcus, PFS
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occipital complex. Not only can connectivity capture this robust
neural response (Fig. 2d), but it also accounts for the somewhat
less characterized dorsal activity patterns, for example in the in-
traparietal sulcus. Connectivity versus group-average compari-
sons again indicated that connectivity predictions were more
accurate across all gray-matter voxels of the brain, in both
group 1 (Fig. 3a; T17 = −18.81; P = 8.16 × 10−13) and group 2
(Fig. 3b; T7 =−17.79; P = 4.37 × 10−7).

A one-way ANOVA found significant differences in prediction
errors between the 4 contrasts (F3 = 14.71, P = 1.75 × 10−7). Post hoc
t-tests revealed that the connectivity-based predictions for Bod-
ies had significantly higher errors than each of the other con-
trasts (Bodies vs. each of: Faces t = 9.08, P = 6.24 × 10−8; Scenes
t = 5.73, P = 2.43 × 10−5; Objects t = 5.38, P = 4.94 × 10−5). Additional-
ly, Faces and Scenes were significantly more accurate than Ob-
jects (t = 2.87, P = 1.07 × 10−2; t = 3.50, P = 2.72 × 10−3, respectively).
Faces and Scenes prediction errors were not significantly differ-
ent from one another. Furthermore, these results were replicated
in group 2 (F3 = 5.15; P = 5.83 × 10−3; Supplementary Table 1 for
pair-wise post hoc tests).

Connectivity-Based Predictions of Neural Responses
Within Regions of Interest

We tested whether connectivity was able to capture voxel-wise
contrast responses not only across the brain, but also in the
most functionally specific regions (i.e., ROIs; Table 1). We de-
fined ROIs for each subject using parcels from Julian et al.
(2012), and evaluated the voxel-wise prediction accuracies of
the connectivity and the group-average (benchmark) models
in each ROI. We also compared prediction errors for each voxel

within the ROIs of each participant (i.e., within-subject paired
t-test on voxel-wise errors for connectivity vs. group predic-
tions). We calculated the percentage of subjects whose connect-
ivity patterns better predicted fMRI activation than the group
average (P < 0.05 Bonferroni corrected for total number of ROIs
by total subjects in both groups, i.e., 19 ROIs × 26 subjects).
With the exception of right fusiform body area, the voxel-wise
responses within each ROI were significantly better predicted
by connectivity patterns than a group average in over 90% of
subjects (Fig. 4a). The results were replicated in group 2, with
over 90% of the subjects’ fMRI activation significantly better
predicted by connectivity than by group in each ROI (Fig. 4b).
Thus, even within the immediate vicinity of each ROI, connect-
ivity-based predictions of function were a better proxy for
an individual’s fMRI responses than current alternatives for
estimating function (i.e., group average).

Parcels with the Strongest Relationship Between
Connectivity and Function

Next, we examined the relationship between connectivity and
function (i.e., goodness of fit) for each anatomical parcel, and
whether the strength of this connectivity–function relationship
could be explained by the functional characteristics of the ana-
tomical parcels.We used 2metrics to describe each parcel’s func-
tional characteristics: 1) the functional selectivity of the parcel,
calculated from the top 5th percentile voxels for each functional
contrast; and 2) the functional information that is present in
each parcel (i.e., MVPA decoding accuracy). We wanted to know
if there was any systematic relationship between goodness of
fit (between functional responses and connectivity) and the

Figure 2. Visualization of prediction results on an example subject. Representative subject’s actual and predicted activation images are up-sampled from the DWI

structural image to the same participant’s structural scan, and projected onto the participant’s inflated brain surface. Predicted fMRI activation values (right column

of each panel) for each visual category contrast closely match the actual fMRI values (left columns) for that contrast, especially in regions commonly identified as

being functionally selective for that particular visual category (i.e., fROIs; see Table 1). (a) Faces (b) Bodies (c) Scenes (d) Objects.
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functional characteristics of parcels. For example, do themost se-
lective parcels have the strongest relationship between connect-
ivity and function, or are some parcels especially “wired” for
function, regardless of selectivity?

We calculated each parcel’s goodness of fit (R2), which captures
the degree to which connectivity can explain a parcel’s functional
variance across voxels and subjects. We first correlated these R2

values with the functional selectivity of each parcel. For each con-
trast and for each parcel, we identified the most selective voxels
(i.e., voxels with 5th percentile responses based on the contrast
t-statistic) from 3 of 4 functional runs, and recorded the contrast
responses of these voxels from the remaining functional run. We
repeated this procedure 4 times (iterating which run was left
out), and averaged across these iterations. Thus, our measure of
functional selectivity was generated independently from the data
that was used to identify the top responding voxels. We found
that the R2 values were positively and significantly correlated
with functional selectivity for all 4 of the functional contrasts
(Fig. 5): Faces: r = 0.46, P = 3.34 × 10−9; Bodies: r = 0.40, P = 3.48 × 10−7;
Scenes: r = 0.66, P = 8.94 × 10−20; andObjects: r = 0.63, P = 6.35 × 10−18.

We next investigated whether the fit of connectivity to func-
tion could also be explained by the amount of contrast-specific in-
formation present in the pattern of functional responses across
the voxels of each parcel. For each parcel, we asked how well the
voxel-wise pattern of responses was able to distinguish one

functional contrast from the others (i.e., decoding accuracy
through MVPA, e.g., Haxby et al. 2001). These MVPA accuracies re-
flect the pattern (and cross-run reliability) of responses for all vox-
els in a parcel, and how unique that pattern is for that contrast
(i.e., how well can the pattern decode the contrast of interest ver-
sus the rest). We found that MVPA decoding accuracies for each
functional contrast were also positively and significantly cor-
related with the R2 values of the parcels (Fig. 6): Faces: r = 0.38,
P = 2.26 × 10−6; Bodies: r = 0.38, P = 2.24 × 10−6; Objects: r = 0.57,
P = 4.91 × 10−14; Scenes: r = 0.56, P = 1.63 × 10−13.

We also compared R2 values for sulcal versus gyral parcels to
checkwhether DWI connectivity performed better in certain par-
cels simply because of gyral bias. We found that there were no
differences for any contrast (Faces: P = 0.20; Bodies: P = 0.27; Ob-
jects: P = 0.66; Scenes: P = 0.15).

Functionally Relevant Networks for Predicting Neural
Responses

We identified the connections that were significant predictors of
function for each anatomical parcel, and for each functional con-
trast. When pooled across all anatomical parcels, these signifi-
cant predictors comprise a complex network that has been
distilled to only those connections that are predictive of each
function;wedefine these networks as the FRNs. Therewere 4net-
works (one per contrast). The complete FRNs for each contrast are
shown in Figure 7 (see also Supplementary Fig. 2). We analyzed
the FRNs using graph theoretical approaches, which provide a
powerful way to quantify complex networks (see Fig. 8, also
Bullmore andSporns 2009).We calculated eachpredictor’s parcel’s
degree, clustering coefficient, and core number, and correlated
these measures with the functional selectivity of the parcels
(same selectivity measure that was used in see Parcels with the
Strongest Relationship Between Connectivity and Function).

Are the most common predictors also the most functionally
selective? We calculated the number of times each parcel was
predictive of functional responses in every other parcel (in
graph theoretical vocabulary, the parcel’s degree), and correlated
these results with the functional selectivity of the parcels. For all
contrasts except Bodies,we found that themore selective a parcel
is for a given category, the more often connectivity to that parcel
is predictive of selectivity for that category (Faces: r = 0.29, P =
3.98 × 10−4; Bodies: r = 0.14, P = 0.0952; Scenes: r = 0.28, P = 4.47 ×
10−4; Objects: r = 0.36, P = 6.07 × 10−6).

To further analyze the FRNs, we calculated another metric
commonly used in graph theory: the clustering coefficient of
each parcel. The clustering coefficient measures how intercon-
nected the secondary network of a node is. For example, a node
with a high clustering coefficient would be part of a clique,
such that the nodes that connect to it are also connected to one
another. To illustrate this metric for FRNs, a parcel with a high
clustering coefficient may predict function in a set of other par-
cels, and these parcels would also predict function in one an-
other. We correlated each parcel’s clustering coefficient with its
degree of selectivity. For all 4 contrasts, we observed a significant
positive correlation between clustering and selectivity (Faces: r =
0.26, P = 1.15 × 10−3; Bodies: r = 0.26, P = 1.55 × 10−3; Scenes: r = 0.34,
P = 2.24 × 10−5; Objects: r = 0.30, P = 2.09 × 10−4). Thus, the most se-
lective parcels form local cliques such that their connectivity to
one another is especially predictive; conversely, nonselective
parcels are more diffuse and do not form predictive communities.

We next performed k-core decomposition (Lick and White
1970; Seidman 1983), which identifies the underlying backbone
of a network through iterative pruning (i.e., removing nodes

Figure 3.Mean prediction errors and comparison to benchmark. Prediction errors

(i.e., mean absolute errors) across all voxels for the predicted fMRI activation by

connectivity and the group-average benchmark are plotted for each functional

contrast for participants in (a) group 1 and (b) group 2. For both groups 1 and 2,

predictions from the connectivity models were significantly more accurate

(lower error) than predictions from the group-analysis benchmark.
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from the network). In k-core decomposition, several subnet-
works (called k-cores) are identified by successively removing
all nodes of a network with degree smaller than k until all
remaining nodes have a degree equal to or larger than k (e.g.,
remove a parcel with the lowest degree, see if its neighbors are
connected with any other parcel, remove the neighbors too
if they now have a low degree, etc.). Each successive k-core con-
tains increasingly robust nodes and the largest k-cores constitute
the structural backbone of a network (e.g., Hagmann et al. 2008).
Using this approach, we computed the core number for each par-
cel; parcels with larger k-cores would thus constitute the deepest
foundations of the FRNs. We wanted to know whether the foun-
dations of the FRNs were also the most selective for each con-
trast, so we correlated each parcel’s core number with its
selectivity. For all 4 contrasts, we observed a significant positive
correlation between core number and selectivity (Faces: r = 0.36,
P = 8.18 × 10−6; Bodies: r = 0.23, P = 4.79 × 10−3; Scenes: r = 0.30, P =
2.22 × 10−4; Objects: r = 0.47, P = 1.55 × 10−9). Thus, the central
core of the FRNs is composed of the most selective parcels; con-
versely, nonselective parcels make up the more peripheral com-
ponents of the FRNs.

Discussion
Wehypothesized that extrinsic anatomical connectivitymirrors
functional selectivity at a fine spatial grain (voxelwise) across
the human cortex, such that the unique connectivity fingerprint
of voxels may be used to predict neural responses throughout
the brain, and acrossmany functions.We tested this hypothesis
for high-level visual functions using a novel method of directly
linking DWI and fMRI in the same individuals (Saygin et al.
2012).

Connectivity Can Predict Neural Selectivity
at a Voxel-Wise Scale

For each functional contrast, we found that voxel-wise fMRI ac-
tivity of an individual can be predicted using only their DWI
connectivity patterns. There is great functional diversity with-
in cortical regions and our results demonstrate that specific
connectivity patterns may be important for this functional
diversity at a fine spatial grain. Future studies may use the pre-
sent approach to gain a more detailed understanding of the

Figure 4. Predictive accuracy across subjects for connectivity versus group-analysis benchmark. For each of the fROIs (depicted on the inflated brains, see Julian et al. (2012)

for ROI nomenclature), we calculated the percentage of subjects whose connectivity patterns better predicted their activation patterns than a group-based prediction

(paired t-test of voxel-wise prediction errors for connectivity vs. group average per subject, P < 0.05 Bonferroni corrected for total number of fROIs times the total

number of subjects across both groups, i.e., 26 × 19) in (a) the cross-validation group (group 1) and (b) replication test group (group 2). Lighter colors indicate left-

hemisphere fROIs (some fROIs did not have a left-hemisphere counterpart).
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structure-function relationship of voxel-wise preferences for
specific stimuli or selectivity for subordinate categories (e.g., in-
dividual faces or specific body parts).

Further, by treating each voxel as a unique entity in both con-
nectivity and function, this approach can be used to explore the
gradient of functional responses across the cortex while remain-
ing agnostic about whether discrete brain modules exist. Future
studies can explore the topology of connectivity profiles in great-
er detail and discover whether connectivity fingerprints exhibit
sharp spatial boundaries thatmay correspond with the boundar-
ies of putative functional modules.

Connectivity Can Predict Neural Selectivity Throughout
Human Cortex

These results replicate prior work showing that the fusiform
gyrus has specialized connectivity patterns that underlie face
perception (Saygin et al. 2012). But importantly, these findings
demonstrate that the tight relationship between connectivity

and function also exists across other components of the face pro-
cessing network. Further, bymodeling selectivity as a function of
connectivity across the brain, we were able to compare the rela-
tionship between neural selectivity andmodel fit across anatom-
ical parcels. This allows us to addresswhether this relationship 1)
holds equally across cortical regions, 2) is specific to certain par-
cels, or 3) is strongest in themost selective parcels. Our data show
a tight relationship between connectivity and function across the
cortex, but a stronger relationship for each contrast in parcels
that contain the greatest selectivity for that contrast. Thus,
some of the strongest predictions were found for face selectivity
around the fusiform gyrus where connectivity accounted for 30%
of the functional variance across voxels and across participants,
and for object selectivity in lateral occipital cortex, where con-
nectivity accounted for 32% of the functional selectivity across
voxels. These results indicate that extrinsic connectivity bears
a close relationship to functional selectivity across the cortex.

Although the model fits increased with the selectivity of the
parcel for the contrast in question, it is difficult to disentangle

Figure 5. Model fits positively correlate with functional selectivity per anatomical parcel. The fits or R2 values for the final models of connectivity and function per

anatomical region were significantly and positively correlated with the mean absolute contrast responses for voxels in the 5th percentile for each parcel. These values

reflect the response selectivity of each parcel to the functional contrast, (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects. Parcelswith bettermodel fits had greater functional

selectivity for that functional contrast.
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this effect from the reliability of the functional response in a
given parcel. It remains unclear whether connectivity may also
fit parcels with reliable fMRI responses but low selectivity for a
contrast. Future studies can model the within-subject fMRI re-
sponses (e.g., across a large number of experimental runs) for
each voxel as a repeated measure, and calculate whether voxels
with high selectivity (and high stability across runs) are better
modeled by connectivity than voxels with lower selectivity but
high stability.

Connectivity Can Predict Neural Selectivity across a
Range of Functions

These results extendpriorworkon face selectivity in the fusiform
gyrus (Saygin et al. 2012) not only to all of cortex, but also to other
high-level visual categories. Substantial evidence suggests that
faces are a special perceptual category for humans and other so-
cial animals (e.g., Kanwisher 2010; McKone and Robbins 2011;
Kanwisher and Dilks 2014), and so the tight relationship between
connectivity and neural responses might have been restricted
to face selectivity. Indeed, we found that connectivity most
accurately predicted responses to faces and scenes, perhaps

reflecting the evolutionary significance of these 2 categories.
Nonetheless, the neural responses for other visual categories
were also accurately predicted from connectivity alone. This find-
ing provides evidence in support of the fundamental assumption
that extrinsic connections underlie brain function in general, and
not only for select categories. However, the present experiment
only tested high-level visual categories and whether this as-
sumption also holds for other domains such as audition, mem-
ory, or language remains untested. Future studies can use the
present approach to test the connectivity–function relationship
in other domains.

Further, our results showed that connectivity was a better
predictor of fMRI responses to visual categories than the only
other current method for predicting voxel-wise brain function
in the absence of an fMRI scan in the subject in question: a
group analysis of the same functional contrast in a different
set of subjects. The fact that functional predictions were more
accurate from the same subject’s diffusion data than from
group data on the same functional contrast shows that individ-
ual connectivity was able to account for individual function.
That is, connectivity was able to capture an individual’s func-
tional responses above and beyond what is common across

Figure 6. Model fits positively correlate with MVPA accuracy per anatomical parcel. The fits or R2 values for the final models of connectivity and function per anatomical

region were significantly and positively correlated with MVPA accuracies to each functional contrast, which reflect the cooperative selectivity of the response patterns

across voxels within each region (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects. Parcels with better model fits had higher MVPA accuracy for that functional contrast.
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individuals. Indeed, we found that the DWI predictions of voxel-
wise functional response even had accuracy comparable with a
second functional scan in the same subject on the same con-
trast (Supplementary Fig. 1). The use of connectivity to predict
voxel-wise functional responses has substantial promise clinic-
ally, for example for determining functionally selective regions
of cortex in individuals who cannot be functionally scanned
(because they are comatose, unable to perform the tasks

required for functional scanning, or unable to lie still without
sedation).

Predicting Neural Function from Connectivity Reveals
Functionally Relevant Networks

Among the multitude of connections within any voxel, only a
subset of connections may be especially relevant to a particular

Figure 7. Functionally relevant networks. The functionally relevant networks (FRNs) for (a) Faces, (b) Bodies, (c) Scenes, and (d) Objects are visualized as directed graphs.

Left column: right lateral surface; center column: left lateral surface; right column: ventral surface (with right hemisphere on top). In this graphical view, nodes reflect

parcels, and edges are the anatomical connections that are significant predictors of neural responses. Edges originate from significant predictors, and their arrows

point toward the parcels whose neural responses are predicted. For example, if node A predicts node B, then an arrow would originate from node A and point toward

node B. Node size scales with selectivity, such that larger spheres represent parcels with higher selectivity.
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function of interest. Indeed, it is possible that even a majority of
connections are not involved in the primary function of a region.
For example, <5% of the inputs tomacaque primary visual cortex
V1 arrive from the optic radiations (Peters et al. 1994), which are
obviously critical for visual responses in V1. This consideration
highlights the need to extract, out of the overwhelmingly com-
plex connectivity patterns, the connections that most strongly
influence the neural responses for a particular stimulus or behav-
ior.We need to parse brain connectivity in a functional context in
order to decipher the impact of each connection in defining a re-
gion’s functional properties (see Lee and Reid 2011; Seung 2011;
Reid 2012).

The novel approach used here enables us to identify the con-
nections that are relevant for predicting different functional se-
lectivities, or the FRNs for each fMRI contrast. These networks
offer rich information about the connections that are predictive
in each parcel and for each contrast. We created directed graphs
of the FRNs and analyzed them using graph theoretical metrics.
Previous studies have used graph theoretical approaches to ana-
lyze structural connectivity networks; these studies commonly
relate their findings to functional and/or lesion studies to better
elucidate how anatomical connections support neural functions
(e.g., He et al. 2007; Bullmore and Sporns 2009). In the present
study, we use similar graph theoretical approaches to directly

analyze the structural networks that are predictive for each of
the functional contrasts tested.

We found that the more selective a parcel is, the more fre-
quently its connectivity predicts function in other areas (i.e., de-
gree correlates with selectivity). Unlike functional connectivity,
structural connectivity is naïve to the functional responses of
the target regions; a region need not possess similar functional
characteristics to be connected to (and predictive of function in)
another region. Further, the connectivity models in our analyses
only had information about the connection strength of the pre-
dictors, not their functional responses; it is notable that the
most selective parcels were themselves predictors of function
across the brain, even without any explicit modeling of the func-
tional responses of connected regions. An alternative outcome
could have been that the most selective parcels do not directly
predict selectivity elsewhere, and instead share predictive infor-
mation with the rest of the brain through their connections with
intermediary hub nodes (such as those elucidated in Hagmann
et al. 2008; Iturria-Medina et al. 2008; Gong et al. 2009). Our ana-
lyses instead show that visual categorical responses across the
brain are predicted by connectivity with the most selective
brain regions.

We also found that the clustering coefficient of each parcel
was significantly correlated with the selectivity of the parcel for

Figure 8. Schematic of whole-brain network analyses. (a) A final model (ƒ(x)) for each parcel and for each contrast is computed (see Fig. 1). (b) ƒ(x) from all parcels are

concatenated to yield a 148 × 148 matrix; rows are seed parcels and columns are target parcels (predictors). This matrix is then (c) binarized based on significance (i.e.,

each ƒ(x) is assigned 1 or “true” for coefficients that make a significant contribution to the model). This matrix is the functionally relevant network (FRN) for a

particular fMRI contrast. Here, black squares are “true” (i.e., significant predictors) and white squares are false; the diagonal is white because a parcel cannot predict

itself. (d) A closer look at a few rows of an FRN illustrates the type of information that can be gleaned about a network. For example, in the FRN for Face responses,

parcels 3 and 7 predict responses in parcel 1, but parcel 1 does not predict parcels 3 and 7; instead, parcel 3′s responses are predicted by 7 and vice versa. We can

represent this relationship as a directed network, with arrows pointing “from” the predictors “to” the parcels that they predict. This network diagram is used to

visualize the predictor–predictee relationship for all parcels for each contrast (see Fig. 7). (e–g) We further explored this complex network using graph theory and

calculated 3 metrics that reflected the role of each parcel in predicting responses in other parcels. The values for each of these metrics are shown in the nodes of a

rhetorical network. (e) We calculated out-degree, which is the number of times each parcel was predictive of functional responses in every other parcel. (f ) We also

calculated the clustering coefficient of each parcel, which measures how interconnected the secondary network of a node is (e.g., a parcel with a high clustering

coefficient would predict function in a set of other parcels, and these parcels would also predict function in one another). (g) Lastly, we calculated the core number

of each parcel using k-core decomposition, which identifies the underlying backbone of a network through iterative pruning of nodes. We identified subnetworks

(k-cores) by successively removing all nodes with a degree smaller than k until all remaining nodes have a degree equal to or larger than k (e.g., prune nodes with

degree less than k; if the resulting subnetwork contains nodes with degree less than k, remove them, until all nodes have degree of at least k). Each successive k-core

contains a deeper infrastructure of interconnected components. The core number of a node is the highest k-core that it belongs to.
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all 4 contrasts. High clustering coefficients are commonly asso-
ciated with cliques, or highly interconnected groups of nodes
(Watts and Strogatz 1998). Our results suggest that the most se-
lective parcels form cliques, in which selective parcels are both
predictive “of” one another and predicted “by” one another.

Furthermore, we found significant correlations between se-
lectivity and core number. This signifies that the most selective
parcels also constitute the most foundational elements of the
FRNs and that their connectivity patterns form a structural core
for predicting visual selectivities throughout the brain. It is
worth noting that the network metrics used to analyze the
FRNs are related to one another. For example, parcels that are
members of interconnected cliques may tend to have higher
core numbers, and the core number of a parcel can only be as
large as its degree; butwhile a high degree is necessary for having
a high core number, it is not sufficient. Core numbers are sensi-
tive to the overall neighborhood of each node, and depend on
the features of connected nodes, as well as their own. Thus, the
3 graph theoretical metrics that we use here elucidate different
features of the FRNs and the role of each parcel within that larger
network. Future work may further characterize and contrast the
architecture of various FRNs with more complex graphical ap-
proaches (e.g., modularity, identification of hub nodes, and over-
all network structure). It will also be important to expand this
approach to retinotopic regions, in order to better characterize
FRNs from early visual areas to higher level regions.

Other Future Directions and Conclusions

The stimulus categories used in the present experiment re-
present some of the most robust and replicable perceptual do-
mains, and thus it remains possible that the tight relationship
between connectivity and function holds only for these mental
functions. Connectivity may be unable to account for functional
and intersubject variability in higher level processes, such as de-
cision-making or emotional reappraisal. Testing other, particu-
larly nonperceptual domains will be necessary to understand
whether the relationship between connectivity and neural re-
sponses is a general principle of brain organization. Other future
directions may include amassing a database of functional tasks
and their predictability through connectivity, allowing research-
ers to predict the functional response to a variety of tasks within
any single subject, yet requiring only the acquisition of a single-
shot diffusion scan.

This approach also opens up the possibility of addressing a
fundamentally important question about the developmental ori-
gins of functional specialization: does extrinsic connectivity in-
struct and direct the functional development of the cortex? In
the current paper, we observed a tight relationship between ex-
trinsic connectivity and function in adults, which would be ex-
pected if pre-existing connectivity fingerprints play a causal
role in subsequent development of functional specialization. Re-
searchers will not only be able to use this novel method to study
the differentiation of connectivity patterns across the cortex in
early development, but also ascertain whether connectivity pat-
terns early in life determine subsequent differentiation of
function.

The current results open awindow into the coupling between
the structural organization of the brain and its functional special-
ization. Other anatomical factors, such as intrinsic connectivity
or cytoarchitecture, undoubtedly play a key role in determining
the functional responses of a region. Recent work suggests that
cortical folding patterns and other macroanatomical landmarks
may also allow trained observers to locate high-level visual

regions (Grill-Spector andWeiner 2014;Weiner et al. 2014). Future
studies can combine connectivity information withmacroanato-
mical landmarks to generate individual subject predictions, and
evaluate the contribution of these various anatomical factors in
predicting function. Our analyses nonetheless revealed that, in
the absence of any other information, the input–output relations
of a region (i.e., its extrinsic connections) may be used to accur-
ately predict functional clusters that are variable across the popu-
lation. And although we cannot distinguish between input and
output with DWI, the present findings demonstrate that func-
tionally specialized cortical regions send and receive specialized
projections for category-selective visual function at a fine spatial
grain across the human cortex.
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